

 	Home

PullMonkey Blog

 	 	 		Posts Tagged ‘pdf reader’

 	

18 Jan

Ruby PDF Reader Gem Tutorial

I've been doing a lot of work these days dealing with PDFs and for the most part I've been happy with using poppler-utils' pdftohtml. And that is great if you don't care about positioning or formatting and just care about the content. But for those of you who, like me, have run across the need to know text positioning, font size, indentation, coloring, etc., then we will have to use something more.

I had given just about every other option a chance before I finally found the pdf reader gem. But when I found pdf reader, it didn't have much documentation and it wasn't entirely clear how to get started using it and if it would work. Well, I can tell you that it will work and after playing with the examples a lot of it became much clearer. I learned a lot that would probably be useful for a few other people out there, hence this post.

Ok, well to get started, take a look at the github repository for pdf reader. You don't need to spend too much time, but just note a few places like the examples directory and the list of callbacks.

You should probably familiarize yourself with this PDF specification too - found here. It really came in handly when trying to figure out what arguments are being passed around what they represent.

Let's get started -

Step 1: Install the gem

Yah, this is a pretty easy step, but it is required 🙂

sudo gem install pdf-reader

Step 2: Find a PDF (or PDFs) to use

It would be best to have several PDFs for you to work with since the callbacks could vary depending on the PDF.

NOTE: For these examples, I'm using a really simple PDF, pdf reader could take a while on some PDFs and seem as though it is hanging but it is not, it is just chugging away right around line 283 of this file, reading each byte of your PDF.

Step 3: List the possible callbacks and their args for one of your PDFs

The point of this is to find out what methods we can write for pdf reader to call when it encounters the various parts of our PDF.

The BIG One that you will most likely use is show_text() or some form of it like show_text_with_positioning().

But, for now, THIS all depends on the PDF file you are using, so we need to find out what your PDF uses and go from there.

The easiest way to do this is to follow this example and just substitute "somefile.pdf" with the path to your pdf file.

Run it and you will see a long list of possible callbacks and their arguments. It is likely all squished together, so you can simply change the line of your code that says puts cb to puts cb.inspect and get a MUCH better look at everything.

We will start with show_text, so grep for show_text and see what you get. For my PDF, I have mostly show_text_with_positioning.

Step 4: Do some lookups

What are the args they are showing me for my callbacks and how do we find out?

You can do this two ways, try your luck at searching the pdf file for "show text" or "show text with positioning" and see what you get. Or you can lookup the token used to represent show_text or show_text_with_positioning.

The first way is pretty obvious, so on to the second - look in the list of callbacks I had your familiarize yourself with earlier, starting on line 172. Looking through we can find show_text and show_text_with_positioning, having Tj and TJ as their operators. Alright, now we have something to look up - "TJ". Well, I found it on page 251 of the PDF Specification from earlier. Some of descriptions for the operators will require rereading but you will get the hang of it.

Step 5: Use what we found

Now that we know how the show_text_with_positioning works and what args it brings in, we can write our code.

We need an instance of a receiver to pass to the PDF Reader. This is just a class that has methods likes show_text() of show_text_with_positioning(). Our receiver could look something like this:

Now we just need to create our receiver instance an pass our PDF file to pdf reader:

Don't forget to require the pdf reader at the top of your script like this:

require 'rubygems'

require 'pdf/reader'

Step 6: Check out the results

If we run our script, we will see all the text that uses Tj or TJ print out.

This is just the beginning and you can pick and choose any of the callbacks from that list (list of operators) and implement just about anything.

At the beginning of this post, I mentioned that I was concerned about positioning. This means I had to get very familiar with the text matrix operator (Tm), found on page 250 of the specification. It takes six arguments (a-f) all representing one thing or another and it is not very well documented. From what I can gather, the first four (a through d) are for things like scale and rotation, the last two e and f are for position on the page, where e is along the x axis and f along the y axis.

There is another text positioning operator that I saw quite often and that is move_text_position (Td operator, page 249 of the specification) that actually provides the x and y (unscaled) text space units coordinates. So if y is -1, that just means go to the next line and if y is 0, stay on the same line, -2, move down two lines, 2, move up two lines, etc. x is for indentation or horizontal spacing and represents the number of characters (spaces) to offset the text position by.

I hope this helps and a huge thanks goes to James Healy for his grand work on pdf reader.

6 Responses
Filed under: development, rails, ruby, tutorials
Tags: move_text_position, parser, pdf, pdf reader, ruby, show_text, text matrix, text_matrix

		

	

subscribe to the feed

 		Tags

.net
activerecord
api
biking
business
c++
charts
CMS
curb
curl
dynamic
ece231
editor
error
flash
fun
gems
graphs
httpi
java
Javascript
Linux
macromovers
mirah
OFC
open flash chart
php
plugin
plugins
prog
project
rails
ruby
ruby on rails
select boxes
simple
SimpleCMS
skizmo
software
spreadsheet
tutorial
ubuntu
VIN
vin api
xml

	Topics

				Android

	api

	biking

	blog

	business

	C / C++

	development

	games

	Graphics

	Home

	IE hacks

	Javascript

	Linux

	me

	Open Flash Chart Graphs

	opengl

	php

	plugins

	projects

	rails

	railsconf

	ruby

	SimpleCMS

	tutorials

	Uncategorized

			
	
		Recent Posts

			
					Dynamic Select Boxes – Ruby on Rails 3
									
	
					VIN API – Do you know about the complete data set?
									
	
					Using Ruby to read from a MagTek USB Card Reader
									
	
					Signature Pad in Linux
									
	
					Using HTTPI with Curb to do multipart file uploads with spnego
									

		
	Recent Comments

	`Drew on Dynamic Select Boxes – Ruby on Rails 3
	Bardach on Dynamic Select Boxes – Ruby on Rails 3
	Bardach on Dynamic Select Boxes – Ruby on Rails 3
	Dar_bok on How I got GTA San Andreas to Work with (a crappy OS) Vista
	Anirudha Pendakur on Using HTTPI with Curb to do multipart file uploads with spnego

	Archives

				August 2012
	July 2012
	May 2012
	April 2012
	March 2012
	November 2011
	October 2011
	May 2011
	March 2011
	February 2011
	January 2011
	November 2010
	September 2010
	April 2010
	February 2010
	January 2010
	December 2009
	October 2009
	September 2009
	August 2009
	April 2009
	March 2009
	February 2009
	January 2009
	October 2008
	September 2008
	August 2008
	July 2008
	April 2008
	March 2008
	February 2008
	January 2008
	December 2007
	October 2007
	September 2007
	August 2007
	June 2007
	May 2007
	April 2007

			

Copyright 2009, powered by WordPress

